Geospace Imaging Exploration Science Matrix – Three top priorities are shaded. | Imaging
Exploration
Theme | RFA
2002 | Objectives /
Investigations | Types of Imaging | Phenomena Observed | Measurement
Requirements | Technology Development | |---------------------------------|-------------|---|---------------------|---|---|--| | 1 | 1f | Coupling of Ring
Current, inner and
outer plasmasphere,
ionosphere | ENA,
EUV,
FUV | O.N2 ratio, ionospheric conductivity, TEC on nightside, 3-D perspective of plasmasphere and ring current; conjugate FUV observations, multiple perspective EUV and ENA observations | Stabilized platform continuous viewing (2 s/c in circular orbit)- ENA: FOV to L=8, 10-20 improvement in sensitivity, FUV: 10s and 5km resolution, 10 counts/kR/s at 135.6nm, 135.6nm, LBHS, LBHL, EUV: improvement of 10 in sensitivity, larger FOV | ENA: UV noise suppression, Foil/grating technology, EUV: improved mirror performance and out-of-band rejection, ability to isolate 91.1nm, FUV hyperspectral imaging, large telemetry and image compression | | 1 | 3d | Mars atmospheric coupling, where did the water go? | ENA, IR,
FUV | atmospheric escape/ion
outflows, aerosols, CO2
atmospheric glow, O+ | IR: global scale diurnal resolution, FUV: Doppler shifted O+, ENA: 10eV-10keV, H & O separation, 10 min resolution, | Imaging ion outflows could be done via ENA imaging or, in principle, using optical imaging. In the ENA imaging regime, a low energy ENA imager such as LENA on IMAGE is required. However, this has not been fully successful for reasons that are not fully understood, but which are through to involve multicollision scattering processes. Hyper-spectral images would provide an attractive method of observation due to the need for spectral information in each pixel. Other emitting ionic species that may participate in the outflows at Earth or elsewhere could provide similar avenues of observation. | **Geospace Imaging Exploration Science Matrix (continued) – Three top priorities are shaded.** | Imaging
Exploration
Theme | RFA
2002 | Objectives /
Investigations | Types of
Imaging | Phenomena Observed | Measurement Requirements | Technology Development | |---------------------------------|-------------|--|-----------------------------|--|--|---| | 1 | 1e | How does solar forcing affect Dayside conductivity | ENA,
EUV,
FUV | O.N2 ratio, ionospheric conductivity, TEC on nightside, 3-D perspective of plasmasphere and ring current | Stabilized platform – ENA: FOV to L=8, 10-20 improvement in sensitivity, FUV: 10s and 5km resolution, 10 counts/kR/s at 135.6nm, 135.6nm, LBHS, LBHL, EUV: improvement of 10 in sensitivity, larger FOV | ENA: UV noise suppression, Foil/grating technology, EUV: improved mirror performance and out-of-band rejection, ability to isolate 91.1nm, FUV hyperspectral imaging, large telemetry and image compression | | 1 | 1e | Mass and energy
transfer across the
Magnetopause | Radio
tomograph
y | Plasma density maps
and in situ
measurements | Multiple satellites | No new technology is needed,
only the trust that multiple
satellites can be built and
launched | | 1 | 1f | Does solar / magnetospheric / ionospheric forcing have any affect on troposheric lightning? | VIS and
X-Ray
imagers | lightning strike location
and x-ray emission,
precipitating particles | Continuous lightning imaging – location, time, characteristic (total lightning) – 2 millisecond Sprite imaging Spherics activity Trapped particle populations including pitch angles Precipitating particles – particle spectrum in a second Hiss spectrum – in 0.25 sec. X-ray imager – soft and hard | Sprite / lightning discrimination | | 1 | 1f | global response of
the neutral
atmosphere to storm
inputs and normal
solar forcing | EUV,
FUV | ion outflows, full disk
images of 135.6 nm O,
N2+ 1 st negative system,
NO, 5Re FOV for
EUV/HeII, TEC | Stabilized platform at L1 or
geosynchronous, earth
pointing, 25 km resolution,
1KR sensitivity, 30 sec
resolution. | Compact hyperspectral camera | **Geospace Imaging Exploration Science Matrix (continued) – Three top priorities are shaded.** | Imaging
Exploration
Theme | RFA
2002 | Objectives /
Investigations | Types of
Imaging | | Measurement Requirements | Technology
Development | |---------------------------------|-------------|---|---|--|---|---| | 1 | 1f | Long term affects of ion outflow at Mars – image ion outflow | ENA, FUV | H, O, Neutral and ion atmospheric escape | ENA: H, O, 10eV-1keV, 4 pi
sr imaging, 60 sec; FUV:
Doppler shifted O+ emission | ENA: suppression, surface conversion | | 1 | 3b | understanding how
pressure pulses affect
magnetosphere | FUV | dayside auroral
emissions, solar wind
plasma and magnetic
field | full auroral oval on times scale < 60 sec, 50 km resolution, | | | 1 | 3d | exploring the mid-
latitude nightglow | FUV imagers | electron density | large scale images with 60 sec
cadence, for > 6 hours, 10 km
resolution, 135.6 nm, | compact imagers | | 1 | 3d | exploring the dayside
airglow | FUV imagers | electron density, O/N2 ratio | large scale images with 60 sec
cadence, for > 6 hours, 25 km
resolution, 135.6nm LBHS,
LBHL | compact hyperspectral imaging | | 1 | | investigate the
atmospheric-
ionospheric dynamic
coupling | Visible and IR | atmospheric waves,
winds, temperatures,
temperature, cloud
properties | 10 km spatial resolution, high vertical resolution | | | 1 | 1e | What is the driver for variability – internal or external driver? Imaging plasmasheet | radio
tomography of
the
plasmasheet,
ENA, FUV | plasma density maps and
in situ measurements,
auroral emissions | plasma density maps on minute
time scale (BBF time scale),
multiple satellites, stabilized
platform for auroral
measurements LBHL, LBHS,
Proton auroral emissions,
global FOV | | **Geospace Imaging Exploration Science Matrix (continued) – Three top priorities are shaded.** | Imaging
Exploration
Theme | RFA
2002 | Objectives /
Investigations | Types of
Imaging | Phenomena
Observed | Measurement Requirements | Technology Development | |---------------------------------|-------------|---|--------------------------------|--|--|---| | 2 | 1f | Understanding the dynamic aurora | UV and
Visible
imagers | small and large
scale structures, in
situ particles and
fields, currents and
average
precipitating
energy, conjugate
observations | Small scale imaging at 30Hz, LBHS and LBHL large scale imaging, simultaneous in-situ plasma and field measurements on same time scale. Continuous observation of footprint of spacecraft field line for >15 s | Improved data compression techniques, larger apertures, increased sensitivity, hyperspectral detectors, increased telemetry bandwidth; 'smart' high resolution detector that can digitally zoom | | 2 | 1f | Exploring the plasma processes of the Io and Europa Torus in the Jovian magnetosphere | EUV, FUV,
Radio
Sounding | emission of S++,
aurora, density
structures | EUV: 68.5 nm, hyperspectral from 50-100 nm FUV: hyperspectral auroral imaging from 100-180 nm Radio: 3kHz-1MHz | hyperspectral imaging, out-
of-band rejection, EUV
mirror performance | | 2 | 1f | Imaging Mercury's magnetosphere | ENA | magnetospheric
ions interacting
with low-altitude
exosphere and
surface | ENA: high mass resolution of ENA's, 10eV-1keV, time resolution 30 sec | ENA: UV suppression,
large G-factor, mass
resolution, surface
conversion | | 2 | 2c | Large vs. small
scale structures -
Filamentation | UV and VIS imagers | aurora emission
combined with in
situ measurements,
camera with high
resolution and
multiple wave
lengths | Cameras with high resolution needs ~<1 km optical resolution at 100 km and a cadence of <1 image per second, cameras with multiple wavelength needs to operate in wave lengths so the spectra shape of the precipitating electrons can be determined | Create satellite imager that can observe the magnetic footprint of the satellite for continuous time periods with the right resolutions and cadence with to high signal to noise ratio | Geospace Imaging Exploration Science Matrix (continued) - Three top priorities are shaded. | Imaging
Exploration
Theme | RFA
2002 | Objectives /
Investigations | Types of Imaging | Phenomena
Observed | Measurement Requirements | Technology Development | |---------------------------------|-------------|--------------------------------|---------------------|---|---|----------------------------------| | 2 | 1f | Hot plasma
dynamics | ENA,
EUV,
FUV | magnetospheric
global ion
dynamics, cold gas
distribution,
auroral dynamics | ENA: 2 degree resolution, energies from 5 keV to 200 keV, separate H from O, S EUV: High Sensitivity, high spectral resolution, wavelength coverage for H, O, S, OH gasses FUV: Sensitivity to see diffuse aurora, wavelength coverage to get ionospheric conductances from energy deposition | For all capability to operate in | ## **Exploration Themes:** - 1. Coupling between diverse plasma regimes from the solar wind to the atmosphere - 2. Acceleration of particles and the associated energy transfer 2002 Roadmap | Science
Objectives | Research Focus Areas | Investigations | |---|--|---| | Understand the | Understand the structure and dynamics of the Sun and solar wind and the origins of the magnetic variability. | (1a) Understand the transport of mass, energy and momentum within the sun and into the solar atmosphere. (1b) Determine through direct and indirect measurements of the origins of the solar wind, its magnetic field, and energetic particles. | | Changing Flow of
Energy and Matter
throughout the Sun,
heliosphere and | Determine the evolution of the heliosphere and interaction with the galaxy. | (1c) Determine the evolution of the heliosphere on its largest scales.(1d) Determine the interaction between the Sun and the galaxy | | planetary
environments | Understand the response of magnetospheres and atmospheres to external and internal drivers. | (1e) Differentiate among the dynamic magnetospheric responses to the steady and non-steady drivers/ (1f) Explore the chain of action/reaction processes that regulate solar energy transfer into and through the coupled magnetosphere-ionosphere-atmosphere system. | 2002 Roadmap (continued) | Science
Objectives | Research Focus Areas | Investigations | |---|---|---| | Explore the fundamental physical processes | Discover how magnetic fields are created and evolve and how charged particles are accelerated. | (2a) Discover the mechanisms for creation, annihilation and reconnection of magnetic fields. (2b) Determine how charged particles are accelerated to enormous energies. | | of space plasma
systems | Understand coupling across multiple scale lengths its generality in plasma systems. | (2c) Understand how small scale processes couple to large scale dynamics.(2d) Test the generality of processes in diverse plasma environments. | | Define the origins and societal | Develop the capability to predict solar activity and the evolution of solar disturbances as they propagate in the heliosphere and affect the Earth. | (3a) Develop the capability to predict solar activity and its consequences in space.(3b) Develop an understanding of the evolution of solar disturbances. | | impacts of variability in the Sun-Earth connection. | Specify and enable prediction of changes to the Earth's radiation environment, ionosphere, and upper atmosphere. | (3c) Develop the capability to specify and predict changes to the radiation environment. (3d) Develop an understanding of the upper atmosphere response to solar forcing and coupling from the lower atmosphere. |